Problems

The JWKB Approximation

Question 1: Assume $V(x)=\frac{1}{2} \mu \omega^{2} x^{2}$. Calculate the values of the turning points and show that the energy eigenvalues as obtained by using the JWKB quantization condition is given by $E=E_{n}=$ $\left(n+\frac{1}{2}\right) \hbar \omega, n=0,1,2,3, \ldots(b)$ Plot the JWKB wave functions corresponding to $n=5$ and $n=7$.

Solution 1: $V(x)=\frac{1}{2} \mu \omega^{2} x^{2}$
Thus

$$
k^{2}(x)=\frac{2 \mu}{\hbar^{2}}\left[E-\frac{1}{2} \mu \omega^{2} x^{2}\right]
$$

and the schrodinger equation is

$$
\frac{d^{2} \psi}{d x^{2}}+k^{2}(x) \psi(x)
$$

Turning points [where $k^{2}(x)=0$] will be given by $x= \pm \sqrt{\frac{2 E}{\mu \omega^{2}}}$
Thus $a=-\sqrt{\frac{2 E}{\mu \omega^{2}}}$ and $b=+\sqrt{\frac{2 E}{\mu \omega^{2}}}$

$$
\begin{aligned}
\left(n+\frac{1}{2}\right) \pi= & \int_{a}^{b} k(x) \mathrm{dx} \\
= & \sqrt{\frac{2 \mu}{\hbar^{2}}} \int_{a}^{b}\left[E-\frac{1}{2} \mu \omega^{2} x^{2}\right]^{\frac{1}{2}} \mathrm{dx} \\
= & \sqrt{\frac{2 \mu}{\hbar^{2}}} \sqrt{\frac{\mu w^{2}}{2}} \int_{a}^{b}\left(\alpha^{2}-x^{2}\right)^{\frac{1}{2}} \mathrm{dx} \\
& \text { where } x=\alpha \sin \theta, \alpha=\sqrt{\frac{2 E}{\mu \omega^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
\int_{a}^{b}\left(\alpha^{2}-x^{2}\right)^{\frac{1}{2}} \mathrm{dx} & =\int_{-\alpha}^{+\alpha} \sqrt{\alpha^{2}-x^{2}} \mathrm{dx} \\
& =2 \int_{0}^{\frac{\pi}{2}} \alpha^{2} \cos ^{2} \theta \mathrm{~d} \theta \\
& =2 \alpha^{2} \cdot \frac{1}{2} \cdot \frac{\pi}{2} \\
& =\frac{\pi}{2} \cdot \frac{2 E}{\mu \omega^{2}}
\end{aligned}
$$

Thus $\left(n+\frac{1}{2}\right) \pi=\sqrt{\frac{2 \mu}{\hbar^{2}}} \cdot \sqrt{\frac{\mu w^{2}}{2}} \cdot \frac{\pi E}{\mu \omega^{2}}$
$\Longrightarrow E=E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega ; n=0,1,2 \ldots$
which is same as exact result.

Question 2: Assume $\left\{\begin{array}{ll}\mathrm{V}(\mathrm{x})=\infty, & \text { for } x<0 ; \\ =\gamma x, & \text { for } x>0 .\end{array}\right.$ (see fig 1.)
Calculate the values of the turning points and calculate the energy eigen values as obtained by using the JWKB quantization condition.

Solution 2: For $X>0, V(x)=\gamma x$. Thus $k^{2}(x)=\frac{2 \mu}{\hbar^{2}}[E-\gamma x] ; x>0$
The turning points are $x=0$ and $x=\frac{E}{\gamma}$

Thus the JWKB quantization condition is

$$
\begin{aligned}
\left(n+\frac{1}{2}\right) \pi & = \\
& =\sqrt{\frac{2 \mu}{\hbar^{2}}} \int_{0}^{E / \gamma} k(x) \mathrm{dx} \\
& =\frac{2}{E / \gamma}(E-\gamma)^{\frac{1}{2}} \mathrm{dx} \\
& \frac{2}{3 \gamma} \sqrt{\frac{2 \mu}{\hbar^{2}}} E^{3 / 2}
\end{aligned} \quad \Rightarrow E=E_{n}=\left(\frac{\hbar^{2} \gamma^{2}}{2 \mu}\right)^{\frac{1}{3}}\left[\frac{3}{4}(2 n+1) \pi\right]^{\frac{2}{3}} ; n=0,1,2 \ldots
$$

which represents the JWKB energy eigen values. Thus
$\xi_{n}=\frac{E_{n}}{\left(\hbar^{2} \gamma^{2} / 2 \mu\right)^{\frac{1}{3}}}=\left[\frac{3}{4}(2 n+1) \pi\right]^{\frac{2}{3}}$
or, $\xi_{n}=1.7707,3.6838,5.1775, \ldots$ corresponding to $n=0,1,2, \ldots$. The exact values are $\xi_{n}=2.3381,4.0879,5.5206, \ldots$

Question 3: In the above problem assume the JWKB solution which vanishes at the origin and then using the condition that the solution at large values of x should be exponentially decaying, obtain the energy eigen values and compare with the exact result $E=2.3381 E_{0}, 4.0879 E_{0}, 5.5206 E_{0}$ where $E_{0}=\left(\frac{h^{2} \gamma^{2}}{2 \mu}\right) 13$.

Solution 3: We choose the JWKB solution which vanishes at the origin:

$$
\begin{array}{rlc}
\Psi_{J W K B} & = & \frac{A}{\sqrt{k(x)}} \sin \left[\int_{0}^{x} k(x) \mathrm{dx}\right], \quad 0<x<\frac{E}{r} \\
& = & \frac{A}{\sqrt{k(x)}} \sin \left[\theta-\left(\int_{x}^{b}+\frac{\pi}{4}\right)\right] \quad \text { Thus } \\
\text { where } \theta & = & \int_{0}^{b} k(x) \mathrm{dx}+\frac{\pi}{4} \\
\text { and } b & = & \frac{E}{r} \\
\Psi_{J W K B} & =\frac{A}{\sqrt{k}} \sin \theta \cos \left[\int_{x}^{b} k d x+\frac{\pi}{4}\right] \\
& =\frac{-A}{\sqrt{k}} \cos \theta \sin \left[\int_{x}^{b} k d x+\frac{\pi}{4}\right]
\end{array}
$$

The first term on the R.H.S. will go over to an exponentially amplifying solution in the region $x>b$ and therefore we must have $\sin \theta=0$ or $\theta=n \pi$
$\Rightarrow \int_{0}^{b} k d x=\left(n-\frac{1}{4}\right) \pi ; \quad n=1,2, \cdots$
Thus

$$
\begin{aligned}
\xi_{n} & =\frac{E_{n}}{\left(\hbar^{2} r^{2} / 2 \mu\right)^{1 / 3}}=\left[\frac{3}{4}\left(2 n-\frac{1}{2}\right) \pi\right]^{2 / 3} \\
& =2.3203,4.0818,5.5172, \cdots
\end{aligned}
$$

which compares well with the exact values mentioned above.
Question 4: Consider a symmetric potential energy variation as shown in the Fig.2. Assume $0<E<V_{0}$
(a) Write the exponentially decaying JWKB solution in the region $x>b$.
(b) Use JWKB connection formulae to write the solution in the regions $A<x<b$ and $0<x<a$.
(c) Use the condition $\psi(0)=0$ to obtain the transcendental equation determining the energy eigenvalues for anti-symmetric states.
(d) Repeat the analysis for the symmetric JWKB solution.

Solution 4: For $x>b$, the JWKB solution would be
$\Psi(x)=\frac{A}{\sqrt{k}} \exp \left[\int_{b}^{x} k(x) d x\right] ; x>b$
where $k^{2}(x)=\frac{2 \mu}{\hbar^{2}}[V(x)-E]$.

The above solution would go over to
$\Psi_{x}=\frac{2}{\sqrt{k(x)}} \sin \left[\int_{x}^{b} k d x+\frac{\pi}{4}\right], \quad a<x<b$
Now
$\int_{x}^{b} k d x+\frac{\pi}{4}=\int_{a}^{b} k d x+\frac{\pi}{2}-\left(\int_{a}^{x} k d x+\frac{\pi}{4}\right)$
Thus

$$
\left.\begin{array}{rl}
\Psi(x) & =\frac{2}{\sqrt{k(x)}} \cos \left[\theta-\left(\int_{a}^{x} k d x+\frac{\pi}{4}\right)\right] \\
& =\frac{2}{\sqrt{k(x)}}\left[\cos \theta \cos \left(\int_{a}^{x} k d x+\frac{\pi}{4}\right)+\sin \theta \sin \left(\int_{a}^{x} k d x+\frac{\pi}{4}\right)\right], a<x<b
\end{array}\right\}=\int_{a}^{b} k d x \text {. }
$$

We again use connection formulae to obtain
$\Psi(x)=\frac{2}{\sqrt{k(x)}}\left[\cos \theta e^{\int_{x}^{a} k d x}+\frac{1}{2} \sin \theta e^{-\int_{x}^{a} k d x}\right]$ for $-a<x<a$
The condition
$\Psi(0)=0$
will immediately lead to
$\cot \theta=-\frac{1}{2} \exp \left[\int_{-a}^{a} k(x) d x\right]$
where
$\theta=\int_{a}^{b} k(x) d x$
For the symmetric solution $\Psi^{\prime}(0)=0$ and we will get
$\cot \theta=\frac{1}{2} \exp \left[-\int_{-a}^{a} k(x) d x\right]$
Question 5: In the above problem assume $V(x)=1 / 2 \omega^{2}(|x|-d)^{2}$ and carry out the integrations in the transcendental equations.

Solution 5: $V(x)=\frac{1}{2} \mu \omega^{2}(|x|-d)^{2}$

$$
V(0)=V_{0}=\frac{1}{2} \mu \omega^{2} d^{2}
$$

Now (for $E<V_{0}$)

$$
\begin{aligned}
\theta & =\int_{a}^{b} k(x) d x \\
& =\sqrt{\frac{2 \mu}{\hbar^{2}}} \int_{a}^{b}\left[E-\frac{1}{2} \mu \omega^{2}(x-d)^{2}\right]^{1 / 2} d x \\
& =\int_{-\alpha}^{\alpha}\left[\alpha^{2}-\xi^{2}\right]^{1 / 2} d \xi=\frac{\pi}{2} \alpha^{2}
\end{aligned}
$$

where $\alpha=\sqrt{\frac{2 E}{\hbar \omega}}$ and $\xi=\sqrt{\frac{\mu \omega}{\hbar}}(x-d)$
Thus
(i) For $E<V_{0}$
$\overline{\cot \left(\frac{\pi}{2} \alpha^{2}\right)}= \pm \frac{1}{2} \exp \left[-\alpha_{0}\left(\alpha_{0}^{2}-\alpha^{2}\right)^{1 / 2}+\alpha^{2} \cosh ^{-1} \frac{\alpha_{0}}{\alpha}\right]$
(ii) For $E>V_{0}$
$\frac{\pi}{2} \alpha^{2}+\alpha_{0}\left(\alpha^{2}-\alpha_{0}^{2}\right)^{1 / 2}+\alpha^{2} \sin ^{-1} \frac{\alpha_{0}}{\alpha}=\left(m+\frac{1}{2}\right) \pi$
where $\alpha_{0}=\sqrt{\frac{2 V_{0}}{\hbar \omega}}$

